![]() |
The purpose of a prediction model is to estimate the chance of a particular outcome as accurately as possible (prediction). Prediction models are often developed with clinical practice in mind, and involve combining information about patients to calculate an individual’s chances of illness or recovery. The model can then be presented in the form of a clinical predictive rule. General applicability – i.e. the accuracy of the prediction model when applied to new patients in the future – is another very important aspect.
The problems which can occur when developing prediction models include the difficulty of selecting the most important predictors from a large number of variables. If this is not done carefully, the quality of the prediction model can be adversely affected. Also, the prediction model will often need to be adjusted before it can be applied to new patients. All these issues are frequently overlooked or underestimated by clinicians and researchers.
The aim of the course is to provide better knowledge and understanding of the development of prediction models that are relevant to real-life practice. We will focus on the various methods for selecting variables, and the pros and cons of these different methods. Once the prediction model has been developed, it is important to assess the quality of the prediction model. For example, we will look at whether the predictions of the model are accurate and during the course, we will also consider the various ways of measuring accuracy. The question of applying the model to new (future) patients will also be addressed. An important element of this is investigating whether the performance of the prediction model deteriorates when it is applied to new patients. This component is entitled the validation of the prediction model. We will also look at various techniques for validating the prediction model.
The course consists of an intensive programme of partly interactive lectures, combined with computer-based practical work. Examples taken from clinical practice will be used for the computer-based work.
Learning objectives